You are currently browsing the monthly archive for October 2008.

The following approach of deriving Ito’s Formula is in the spirit of Evans handout ‘An introduction to stochastic differential equations’. His approach is intuitive at the cost of some omission of detail and precision.  

The experiemently measured trajectories of systmes modeled by ordinary differential equation (ODE) do not always give give good prediction. The ODE looks like

X^. (t) = b(X(t)) (t>0) with X(0) = x_0 ,

where b: R^n\to R^n is a given, smooth vector field and the solution is the trajectory X(\dot):[0,\infty)\to R^n.

In reality, systems behave with some randomness. Hence, it is intuitive or reasonable to extend the ODE in some way to capture the random effects which disturbing the system.

 

Not finished post. 

Advertisements
October 2008
M T W T F S S
« Sep    
 12345
6789101112
13141516171819
20212223242526
2728293031  

Stochastic analysis

Advertisements